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Abstract

This paper discusses approaches to cooperative
coevol ution of formand function for autonomous vehicles,
specifically evolving morphology and control for an
autonomous micro air vehicle (MAV). The evolution of a
sensor  suite with minimal size, weight, and power
requirements, and reactive strategies for collision-free
navigation for the smulated MAV is described. Results
are presented for several different coevolutionary
approaches to evolution of form and function (single- and
multiple-species models) and for two different control
architectures (a rulebase controller based on the
SAMUEL learning syssem and a neural network
controller implemented and evolved using ECkit).

1. Introduction

This gudy is motivated by the belief that the natural
process of coevolving the form and function of living
organisms can be applied to the design of morphology
and control behaviors of autonomous vehicles in order to
simplify the design processand improve the performance
of the system. The work presented here is a continuation
of the research published in [2].

In this gudy, the mncept of the wevolution of form
and function is applied to the Micro Air Vehicles(MAV s)
domain. Due to the size of the aircraft (wingspan on the
order of 6 inches) as well as the variety of applications,
the design of the sensory payload and the cntroller of the
MAV, is quite mmplex due to the mmplex relationships
between them. The design isaue addressed explicitly in
this gudy is minimizaion of weight and power
requirements. The number of sensors and their sensing
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capabiliti es affed these requirements diredly and also
indiredly through the increase of computational power
requirements. The goa of the study is to evolve a
minimal sensor suite, which all ows for the most efficient
task-spedfic control. The experimental task requires the
MAV to navigate to a spedfied target location, while
avoiding collison with obstacles.  Previoudy the
coevolution was performed using two cooperating genetic
algorithm-based systems, SAMUEL [8] and GENESIS
[7]. The arrent study considers adternative
coevolutionary models as well as alternative ntroller
architedures in order to reach a better understanding of
the domain and the algorithms, which will guide future
research. The single- and multi ple-spedes coevolutionary
models are presented as alternative ways of coevolving
form and function. The discussed controll er architedures
include a rulebase ntroller based on the SAMUEL
learning system and a neural network controll er based on
the ECkit's [19] implementation of multi-layered feed-
forward neural networks.

The remainder of this paper briefly outlines the
rdated work and then describes in details our
implementation of coevolution of the behaviors and the
characteristics of a sensor suite that would alow the
MAV to perform calli sion-freenavigation with maximum
efficiency. The smulated environment, aircraft, and
sensors are described along with the detail s of the two
controllers and the learning systems. Finally, current
results are presented, and the future diredion of the
research is outli ned.

2. Related Work

Evolutionary algorithms have been succesdully
applied to automate the design of robas morphology as
well as the design of the ntrollers, but the mncept of
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coevolution of form and function has surfaced only
recently.

There has been a great deal of work donein the area
of evolution of function for autonomous vehicles.
Behaviors have been evolved using a variety of
representations such as neural-networks or rule bases, for
avariety of tasks including colli sion-freenavigation [17],
[22], exploration [9], as well as depherding [23], [18],
and docking and tracking, just to mention a few. While
most of the work is done is smulation, the same
behaviors can be evolved in real world as $own by [5].

In paralel, research is being done in the area of
evolution of form. Evolutionary algorithms have been
applied to the design of structures assembled out of parts
[6], design of aircrafts [11], as well as to the design of
sensors such as a compound eye [13] or audtory
hardware [14]. [16] presents aframework for the study o
sensor evolution in a mntinuows 2-dimensional virtual
world (XRaptor).

Finally, in recet years, work has began on
coevolving form and function for autonomous agents.
[3] and [4] present continuing research on concurrent
evolution of neural network controllers and visual sensor
morphologies, for visually guided tracking. [24] presents
a system for the mevolution of morphology and behavior
of virtual creaturesthat compete in a physically simulated
threedimensional world. Similar work is presented in
[10] where the body and brain of the aeatures are e/olved
using Lindenmayer systems as generative encoding. In
[12] a hybrid genetic programming/genetic algorithm
approach is presented that allows for evolution of bath
controllers and roba badies to achieve behavior-spedfied
tasks. [15] introduces a LEGO simulator that all ows the
user to coevolve ntrollers and body plans using an
interactive genetic algorithm in simulation before
congtructing the LEGO robds. [1] presents the
comparative study of evolution of a control system given
a fixed sensor suite, and coevolution of sensor
characteristics (placement and range) and the cntrol
architedure for the task of box pushing.

The work presented in this paper is related to the
abowve work, but differs in several aspeds. This gudy
looks at different models of cooperative mevolution as
well as the ontrol architedures in hope of achieving a
better understanding of the evolutionary requirements
for this domain. The majority of the previous work
involved evolution of neural controllers; our approach
looks at evolution of stimuli-response rules aswell. The
sensors  characteristics initially evolved include the
number of sensors and the beam width, with the future
posshility of evolution of range and explicit placement of
each sensor. Also, even though the evolution is
performed in simulation, the smulator closely models the
real aircraft and its environment. Finally, the ontrol
behaviors are not evolved in a spedfic setup of an

environment as in [1], [15], and [12], but rather each
single trial is performed in a randomly and dynamically
created environment in order to improve generality of the
evolved solutions.

3. Evolution of Sensor Design and Control
for MAV

The objedive of the study is to evolve a sensor suite
with a minimal number of sensors, which all ows for the
most efficient task-spedfic control. This sdion givesan
overview of the system architedures used to coevolve the
sensor characteristics and the antrol of the MAV whose
task is a collision-free navigation to a spedfied target
location.

In [2] the learning system used for coevolution of
form and function was composed of two cogperating
genetic  algorithm-based systems, SAMUEL and
GENESIS. SAMUEL evolved the stimuli-response rules
to control the MAV, while GENESIS was used to evolve
characteristics of the sensors for the aircraft. The two
systems created a logp in which the output from one
learning system is the input to the other one. For each
member of the population being evaluated by GENESIS
representing a spedfic sensor configuration, SAMUEL
had to evolve the best colli sion-free navigation behavior.
Due to the inefficiency of the implementation of this
architedure, the neal arose for aternative architedures.
The single- and multi ple-spedes coevolutionary models
were onsidered for this gudy.

3.1 Single-Species Coevolution

In a single-spedes coevolutionary modd for
coevolution of form and function, the individual
(chromosome) in the population, contains the genetic
material describing the information of bah the
morphology and the wntrol behavior of the autonomous
agent. During each generation, each individual in the
population is evaluated in turn based on its task
performance and quality of the morphology, and then
children solutions are produced using evolutionary
operators gich as mutation and crossover. This cycle is
performed until a satisfactory solution is found or the
evolution stagnates. In this model, only the evaluations
can be performed in paralld.

In this work, the single-spedes coevol utionary model
has been used to coevolve form and function with a
rulebase ontroller based on the SAMUEL learning
system and with a neural network controller implemented
using ECkit libraries. The diromosome in the population
contains a floating-point vedor, which describes the
sensor suite of the MAV, and a set of stimulus-response
rules in case of SAMUEL controller or a vedor of



floating-point values representing weights of a neural
network, which implement the wlli sion-free navigation
behavior. The results of the eperiments using this
coevolutionary model for bath controller types are
presented in Sedion 6.1.

3.2 M ultiple-Species Coevolution

Our multi ple-spedes coevolutionary model is based
on the model of the maperative mevolution [20]. In this
model as applied to the mevolution of form and function,
the genetic material describing the morphology and the
control behavior is decomposed into separate spedes.
The individual in one population contains the genetic
material describing the morphology of the agent whil e the
individual in the other population contains genetic
material of a control behavior. Each population is
evolved separately, but in terms of the same global fitness
function that is based on the performance of the task and
the quality of the morphology of the agent. The
evolutionary cycle for each spedes is the same as for the
population in the single-spedes model except that the
member of one population is evaluated in terms of the
best behavior (as defined by fithesg of the other spedes.
Such deaomposition of the problem allows for better
understanding of the problem and simplifies the search
space Also, in this modd bath the learning and the
evaluations can be parall €li zed.

Currently, the multi ple-spedes coevol utionary model
has only been used to coevolve form and function with a
neural network controll er implemented using ECkit. The
first population contains individuals, implemented as
floating-point vedors, whose genetic material describes
the sensor suite of the MAV. The second population
contains individuals that implement the llision-free
navigation behavior as a two-layer feed-forward neura
network. The results of the eperiments using this
coevolutionary model for a neural network controller are
presented in Sedion 6.2.

3.3 Fitness Function

The morphology of the sensor suite and the antrol
behavior of the MAV are evolved in simulation. During
each evaluation, a number of episodes are performed that
begins with placement of the MAV at a random distance
away from the target facing in a random diredion, which
is followed by a random placement of trees in the
environment. The guisodes end with either a successul
arrival of the MAV at the target location, a loss of the
MAV due to energy/time running out, or a loss of the
MAV dueto colli sion with an obstacle. The fitnessof the
individual is based on the quality of the sensor suite and
exeaution of the task and is defined as foll ows:

if (got to goal)
payoff is based on
the distance MAV travel ed (see Section 5.3.3)
PLUS
the quality of the sensor suite (see Section 4.3.3)
eseif (crashed or run out of time)
payoff based on
the distance away fromtarget (see Section 5.3.3)

It should be noted that the @ntribution due to the
quality of the sensor suiteis considered only oncethe task
performance is stisfactory and that payoff is only
assgned oncethe gisode has been completed.

The following sedions will discussthe detail s of the
evolution of form (Sedion 4.0) and function (Sedion
5.0). The goals of each learning task will be reviewed,
followed by implementation details and a short
description of the learning method, the representation and
the spedfic fitnessfunction used.

4. EVOLUTION OF FORM

In this sdion, the detail s of the MAV’s snsor suite
configuration and its evolution are discussed.

4.1 Problem Description

There are a wide variety of sensors that could be
implemented on the MAV, but the final make up of the
sensor suite is constrained by the size, weight, and power
capacity of the vehicle. The ohjedive of this gudy isto
evolve a most power-efficient sensor suite that guarantees
an efficient task-spedfic control. Power efficiency is
asumed for this gudy to be inversdy proportiona to
sensor coverage (beam width and range).

4.2 Problem Representation

The modd (Figure 1) of the range sensor is based on
a smple range sensor. It returns the range to the dosest
obstacle in its field of view. The evolvable sensor
characteristicsinclude:

1. range of theindividual sensor
2. beam width of theindividual sensor
3. placement of individual sensor on the vehicle

sensor coverage
(beam width)

abuel losuss

sensor placement

Figure 1. Sensor Model.



In this gudy, only the number and the beam width of
each of the sensors are being evolved. The number of
sensors is evolved implicitly since values of beam width
and/or range equal to zero imply that the sensor doesn’t
exist. Nine sensors are placed symmetrically along the
diredion of flight in increments of 22.5 degrees with the
maximum sensor range of 200.0 tenths of fed.

4.3 I mplementation of Evolution

4.3.1 Representation. The sensor suite daracteristics
are represented as a vedor of nine floating-point values
each in [0 .. 1] range. Each gene valueis mapped to O to
45 degrees range that defines the beam width of the
Sensor.

432 The Learning Method. The basic genetic
operators, mutation and crossover, are independent of the
coevolutionary model used to evolve the characteristics of
the sensor suite of the MAV as well as the @ntroller
being used. Inall cases, a Gausgan mutation (mu =0 and
sigma=[0.01..0.15.. 0.2]) and atwo-point crosover are
used. Currently, the seledion operator used in the
evolution of the sensor suite dharacteristics, is gedfic to
atednique used to evolve the controller.

SAMUEL uses gandard genetic algorithms and other
competition-based heurigtics to evolve the solution. It
spedfically uses a fitnessproportional seledion method
to choose the individuals out of the population, which
means that the number of offspring is proportional to the
parent’ sfitness Also, the sigma of the Gaussan mutation
of genesisfixed at 0.15 duing learning.

The evolutionary technique dosen from the ECkit
library for evolution of the MAV’s sensor suite is a (., A)
evolution strategy (n equal to 10 and A to 100) [21]. The
sigma of the Gaussan mutation operator is evolved along
with the individuals, but it cannot be higher than 0.2.

4.3.3 Fitness Function Contribution. The fitnessof the
sensor suite is inversely proportional to its coverage and
contributes [0.0 .. 0.2] to the global fitnessfunctions, but
only if the agent behavior alows it to complete the task,
i.e: navigate safely to the target location. The
contribution is calcul ated as foll ows:

frorm(X) = 0.2 * (1.0 — (C(x) / Cexp))

where x is an individual or part of the individual whose
genetic code contains only the information on the
characteristics of the sensor suite; C(x) is the mverage of
the sensor suite @ culated as the sum of the beam widths
of individual sensor; and Cgyp is the maximum posshle
sensor coverage for the experiment; Cexp is currently
equal to 4050 (9 * 45.0).

5. Evolution of Function

In this edion, the detail s of the MAV's control task
and its evolution are discussed. Experimental detail s of
the simulated environment, aircraft, and sensors are
provided along with the details of the learning systems
used.

5.1 Problem Description

The MAV must be able to efficiently and safely
navigate among obstacles (trees) to atarget location. The
desired behavior should maximize the number of times
the MAV reachesthetarget location whil e minimizing the
distance traveled to that location. The generality of
evolved control should be ensured due to a random setup
of the environment for every evaluation.

—

Figure 2. The screenshot of the 3-D
simulated environment used for the
experiments. The white sphere marks the
target and dark gray (or green) spheres
with light gray cylinders mark the
obstacles (trees).

5.2 Problem Representation

5.2.1 Environment. The world as well as the aircraft
itself ismodeled in a high fiddlity, 6-DOF fli ght smulator
(Figure 2), which includes an accurate parameterized
moddl of a 6-inch MAV and a mode of the task
environment. Although the simulator all ows for accurate
modeling of sensor noise, winds, and wind gusts, this
initial study does not take advantage of these c@pabiliti es.
The low-level control for the MAV isimplemented using
a number of PID controllers, which allow the user to
control the aircraft by spedfying only theturn rate values,
the PID controllers adjust speed and altitude of the plane
appropriately. The trees (obstacles) are moddled as
spheres on top of cylinders in order to deaease the
computational complexity of the eavironment. Any



contact between the plane and the tree ongtitutes a
collision. Thedensity of treesis user-defined as a number
of trees per square foat assuming uniform distribution and
was &t to 2.5 trees per hundred square fed. At the
beginning of each simulated flight, the MAV is placed in
a random location within a specified area avay from the
target. Thetarget is gationary and reachable during every
trial.

5.2.2 Sensors. It is assumed that the MAV has a sensor,
which returns the relative range and bearing to the target.
Also, the aircraft is equipped with a number of range
sensors. Each sensor is capable of deteding obstacles and
returning the range to the dosest objed within itsfield of
view. The exact makeup of the sensor suite is evolved as
described in Sedion 4.3.

5.2.3 Actiong/Effectors. Thereisadiscrete set of actions
available to control the MAV. In this gudy, the only
action that is considered spedfies discrete turning rates
for the MAV. The mntrol variableturn_rate is between —
20 and 20 dgrees in increments dependent on the
learning method used. As mentioned, the altitude and the
sped of the plane are adjusted as necessary by underlying
PID controllers.

5.3 Implementation of Evolution

Due to the dhoice of the wntrollers for this gudy, the
methods for evolution of the cntrol behavior for the
MAV for the task of collision-free navigation are
architedure dependent. The following sedions discuss
the details of the evolution for bath, the rulebase
controller evolved using SAMUEL learning system and a
neural network controll er evolved using ECKkit.

5.3.1 Rulebase Controller. SAMUEL implements
behaviors as a coll edion of stimulus-responserules. Each
stimulus-response rule onsists of conditions that match
against the airrent sensors of the autonomous vehicle, and
an action that suggests action to be performed by it. An
example of arule (gene) might be:

RULE 122
IF bearing = [-20, 20] AND
ranged < 45

THEN SET turn_rate = -100

Each rule has an associated strength with it aswell as
a number of other statistics. During each dedsion cycle,
al the rules that match the arrent state are identified.
Conflicts are resolved in favor of rules with higher
strength.  Rule strengths are updated based on rewards
receved after each training episode. For this gudy,
SAMUEL uses the following sensors:

- rangel .. range9: Value between [5..20Q in 10
tenths of fed increments edfiesthe distanceto
the dosest obstacle within sensor’sfield of view.

- range Vauebetween [5.. 2004 in 20tenths of
fed increments Pedfies the distance to the
target.

- bearing: Value between [-180 .. 180 in 45
degree increments gedfies the bearing to the
target.

The action parameter, turn_rate, spedfiestheturn ratefor
the MAV in therange[-20.. 20] in 5 degreeincrements.

The system must learn a behavior for navigating the
MAV to the target location whil e avoiding obstacles. The
behaviors, which are represented as a colledion of
stimulus-response rules, are learned in the SAMUEL rule

Execution Module Cecision Module

| SENS0Is .‘| matehing |\

actions !I—‘_mgﬂﬂﬂj e | pandidate
behavin
. credit ‘,/'
oriti assignm en

o mp eting
behaviarg

AT init al Learning Module

= hehaviors

genetic algarithm

Figure 3. SAMUEL Learning System.

learning system (Figure 3).

SAMUEL uses gandard genetic algorithms and other
competiti on-based heuristics to solve sequential dedsion
problems. It features Lamarckian operators
(spedadlizaion, generalizaion, merging, avoidance and
deletion) that modify dedsion rules on the basis of
observed interaction with the task environment.
SAMUEL has to perform a number of evaluations in
order to provide history for Lamarckian operators, to
coalescerule strengths, and to acoount for the noisein the
evaluations. The original system implementation is
described in greater detail in [8].

5.3.2 Neural Network Controller. The ECkit library
[Potter WWW] contains various representations for
organisms, members of the spedes under evolution. For
this dudy, organisms use a floating-point vedor
representation. The organisms contain the genetic code,
which describes the mnnedion weights of the neural
network controller (Figure 4), which implements the
colli sion-freenavigation behavior.



turn rate

range to obstacles

bearing to goal
range to goal

Figure 4. Neural network controller.

For this gudy, the MAV’s controll er is implemented
as atwo-layer fead-forward neural network. Thereare11
input nodes (9 range sensors, bearing and range to the
target), 5 hidden nodes, and one output node. All hidden
nodes and the output node use a standard sigmoid trigger
function. The output of the antroller is mapped to the
range [-20 .. 20] in 1-degreeincrements and defines the
turn rate of the MAV. The network isfully conneded and
each hidden and output node has a bias asociated with it,
hence the floating-point vedor contains (I+1)*H +
(H+1)*O values in range [-MAX_DOUBLE,
MAX_DOUBLE], where | isthe number of theinputs, H
is the number of the hidden nodes, and O is the number of
the output nodes.

to be
evaluated

o fitness Domain
Model

Figure 5. Coevolutionary model of ECKkit.

S
Population

represeontative

ECKkit is based on the multi ple-spedes coevol utionary
model [20] as briefly described in Sedion 3.2 and as

shown in Figure 5. Each spedesisevaluated based on the
global fitnessfunction in terms of the representative, in
this case the best individual, from all the other spedesin
the eosystem. ECKkit provides the user with a variety of
evolutionary operators whose parameters can be tuned for
the application. The user is reguired to implement the
domain for the eosystem. Details of the system
implementation are described in [19].

The same evolutionary algorithm was chosen to
evolve the neural network controller for colli sion-free
navigation as for evolution of sensor suite dharacteristics,
that is a (u , A) evolution strategy (u equal to 10 and A to
100) with Gaussan mutation (mu = 0 and adaptive sigma
=[0.01.. 1.0]) and two-point crossover. To acoount for
the noise in the evaluations, a number of trials are
performed duing each evaluation.

5.3.3 Fitness Function Contribution. The fitnessof the
controller is proportional to the distance MAV traveled
during the succesdul trial or the minimum distance away
from the target during an unsuccesdul trial, and
contributes [0.0-0.3 .. 0.5-0.8] to the global fitness
functions. The ntribution is calculated as foll ows:

0.8 * (1.0—Dg/D(t)), if succesdul trial

feunc(x) =
0.3 * (1.0—D/Dg), if unsuccesdul trial

where Dsisainitial distanceaway from thetarget, D(t) is
total distance traveled duing the trial, and D, is the
minimum distance away from the target during the trial.

6. Current Results

In this sdion, the results of the eperiments
performed are presented. The results are discussed in
terms of the internal fitnessfunction (Sedion 3.3) as well
as the external performance which is defined as number
of timesthe MAV arrived at the goal. The quality of the
evolved solutions is also evaluated in harder and easier
environments, to get a fed for their ability to generalize.
A random behavior (random turn rate values) failed to
perform the task under all the cnditions considered.

6.1 Single-Species Coevolution
This sdion describes the single-spedes approach to

coevolution of form and function for rulebase and neural
network controll ers.
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Figure 6. Best-so-far internal fitness

(average of 100 evaluations) curve for
coevolution of form and function using a
single-species model based on SAMUEL.

6.1.1 SAMUEL Controller. Thelearning curve, plotting
the internal fitnessagainst the number of evaluations, is
shown in Figure 6. Given the simplicity of sealing
SAMUEL with initial heuristic rules, an initial population
was created which consisted of simple hand-coded rule
sets such as random walk, emergency obstacle avoidance
and going towards the goal. All theinitial sensor suites
contained 9 sensors each with 45-degreebeam width. To
oltain a better estimate of the solutions fitnessin face of
high variance the fitness was averaged over 100 trials.
Theinitial solution as described abowe, obtained 229.18%
level in terms of internal fitness with externa
performance around 23. The best evolved individual
(generation 192 had internal fitnessof 67.73% and 68%
external performance The evolved sensor suite had eight
out of the nine sensors (no sensor at 67.5 degreelocation)
with total beam width of 104.8 degrees. The results for
this experiment are summarized in Table 1.

Fitness # of sensors
Internal External E:tcc))\tlilrage)
Initial 29.2% 23% 9 (405)
Best 67.7% 68% 8 (104.8)

Table 1. Summary of the results for the
single-species coevolutionary model with
rulebase controller. The internal fitness,
external performance (averaged over 100
runs), and the characteristics of the sensor
suite are shown for all conditions.

The quality of the solution was also evaluated in
simpler and more @mplex environments to seehow well
it generalizes. In the smpler environment (approx. 1.25

trees per hundred square fed), the solution obtained
internal fitness of 80.6% and externa performance of
84%. In the more cmplex environment (approx. 5 trees
per hundred square fed), the solution’s internal fitness
deqeased to 39.9% and external performance to 33%.
These results su1ggest the solution’s ability to generali ze.
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Figure 7. Best-so-far internal fitness

(average of 10 evaluations) curve for
coevolution of form and function using a
single-species model based on neural
network controller evolved using
evolutionary strategy in ECKkit.

6.1.2 Neural Network Controller. The learning curve,
plotting the internal fitness against the number of
evaluations, is siown in Figure 7. Theinitial population
of neural network controll ers was randomly initi ali zed, as
were the sensor suites. Due to time nstraints and
inability to currently parallelize the evolution of the
neura network controll er, each member of the population
was evaluated only 10 times, which given the high
variance of the interna fitness function, introduced
discrepancy between the internal fitness as sen by the
learning algorithm and the actual internal fitness of the
solution. Since the quality of learning performed by the
evolutionary algorithm was based on the internal fitness
but the actual fitness allows for better comparison to
external performance bath the internal fithess and the
actual fitness of the solutions are reported. A randomly
generated solution obtained internal fitness of 19.6%
whilein fact it’s value (averaged over 100runs) was only
2.27% with an external fitnessof 0%. The best evolved
solution (generation 113 had an interna fitness of
86.04%, better estimated at 43.5%, and was able to safely
navigate the MAV to the target 46% of thetime. The
evolved senor suite nsisted of all nine sensors with total
beam coverage of 1592 degrees. The results for this
experiment are summarized in Table 2.

As before, the quality of the best individual was
evaluated in smpler and more cmplex environments to
seehow well it generalizes. In the smpler environment,



the solution ohbtained internal fitness of 70.63% and an
external performance of 82%. In the more @mplex
environment, the solution’s internal fitness deaeased to
23.2% and external performanceto 17%. Theseresults
again show that the solution is most likely able to
generalize.

Fitness # of sensors
(total

Internal External coverage)
(Actual
Internal)

Initial 19.61% 0.00% 9 (215.6)
(2.27%)

Best 86.04% 46% 9 (159.2)
(43.48%)

Table 2. Summary of results for the single
species experiments with a neural network
controller. Theinternal fitness as seen by the
learning algorithm is given as well as the
fithess of solution averaged over 100 trials,
the external fitness, and the make up of the
sensor suite are shown.

6.2 Multiple-Species Coevolution

This sdion describes the multi ple-spedes approach
to coevolution of form and function for currently only a
neural network controller.  Implementation of the
multi ple-spedes coevolutionary mode to be used with
SAMUEL is underway.

6.2.1 Neural Network Controller. The learning curve,
plotting the internal fitness against the number of
evaluations, is 1own in Figure 8. Both, the behavior and
the sensor suite populations were initi ali zed with random
individuals. As in the previous experiment (Sedion
6.1.2), inadequate number of evaluations (only 10),
introduced dscrepancy between the internal fitness and
the actual value of the solution. The basdline for this
experiment was the same as in the single-spedes
coevolution with neural network controller (Sedion
6.1.2). A randomly generated solution obtained internal
fitness of 19.6% with more acaurate estimate of 2.27%
and no ability to reach the goal. The best evolved
solution (generation 186) had a 87.14% internal fitness
which was closer to 52.7% with external performance at
53%. The evolved sensor suite makes use of eight out of
nine sensors (no sensor at 67.5 degreelocation) with a
total beam width of 1747 degrees. The results for this
experiment are summarized in Table 3.

The quality of the solution was again evaluated in
smpler and more ewironments to see how wel it

Fitness (%)
8
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Figure 8. Best-so-far internal fithess
(average of 10 evaluations) curve for
coevolution of form and function using a
multiple-species model based on neural
network controller evolved using
evolutionary strategy in ECKkit.

generalizes. In the smpler environment (approx. 1.25
trees per hundred square fed), the solution obtained
internal fitness of 68.1% and externa performance of
75%. In the more omplex environment, the solution’s
internal fitness deaeased to 2914% and externd
performance to 33%. Those results ow solution’s
aptitude for generali zation.

Fitness # of sensors
(total
Internal External | coverage)

(Actual
Internal)

Initial 19.61% 0.00% 9 (215.6)
(2.27%)

Best 87.14% 53% 8 (159.3)
(52.69%)

Table 3. Summary of results for the multiple
species experiments with a neural network
controller. Theinternal fitness as seen by the
learning algorithm is given as well as the
fithess of solution averaged over 100 trials,
the external fitness, and the make up of the
sensor suite are shown.

7. Conclusions and Future Work

This paper discussed approaches to the operative
coevolution of form and function for autonomous
vehicles, spedfically evolving the morphology (the
sensor suite) and the cntrol (goal seeking and colli sion
avoidance behaviors) for an autonomous micro air



vehicle. Thisresearch is sgnificant, because it can result
in more dficient synergistic designs of autonomous
vehicles.

Alternative models of cooperative wevolution were
presented, including single- and multi ple-spedes moddls,
for two different control architedures, a rulebase
controller evolved using the SAMUEL learning system
and a neural network controll er evolved and implemented
usng ECkit. Experimental results were presented
demonstrating that both models and bath control
architedures could learn to coevolve a minimal sensor
suite and corresponding behaviors, and that the resulting
evolved systems were tolerant to changes in environment
complexity.

Once the implementation of the multiple-spedes
coevolutionary model combined with the SAMUEL
learning system is complete, additional data will be
colleded in order to establish statistical significance of
the experimental results.  Given that data, it should be
possble to draw some mnclusions about the preferred
representation and coevolutionary model for this domain.
In the follow-up work, additiona characteristics of the
sensor suite such as explicit placement of the sensors on
the airframe body and the ranges of the sensors, will be
evolved.

While this dudy has gedfically emphasized the
coevolution of sensors and control, this genera
methodology is also applicable to design parameters of
the vehicle structure. In future work, other aspeds of the
parametric model that define the vehicle platform,
spedfically ones that will result diredly in design
dedsions for the airframe structure, will be considered.
Aspeds of the airframe @n be optimized for classes of
missons and expeded behaviors. Future work might also
consider reconfigurable hardware to allow for changesin
the system as missons change over time. Effeds of
sensor noise and variability in the ewvironmental
conditions such as wind spead and dredion on the
evolved system will be mnsidered aswell.
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